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Design of Band4Mmp Filters in the

Pr(esence of Dissipation
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Abstract—The insertion loss vs. frequency characteristic of
equal-element band-stop filters is derived for large as well as small
degrees of dissipation, and for any number of resonators. These re-

sults are presented as curves for one through eight resonator filters.
The equal-element band-stop filter, for small dissipation, is

shown to have the lowest pass-band loss for a specified stop-band
characteristic of all possible filters that can be represented by a low-

pass prototype. Design procedures and examples are explained for
wavegnide and TEM band-stop filters. This in eludes selecting the

optimum number of resonators, the resonator lengths, and the

coupling reactance.
Experimental results on C-band waveguide and UHF coaxial

filters are presented; the results are in good agreement with the
theory. This approach makes possible complete prediction of the
filter response and results in lower pass-band loss than could be
obtained with previously used approaches.

1. INTRODUCTION

D

ESIGNT PROCEDURES avai~able for micro-

wave band-stop filters [1 ], [2 ] assume lossless

circuit elements or consider dissipative effects
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The authors are with the Airborne Instruments Laboratory, a

Division of Cutler-Hammer, Inc., Deer Parlc, L,. 1., N. Y.

as perturbations on lossless designs. In man:y narrow-

band applications, these assumptions are not valid;

techniques that include large, as well as small, dissi pa-

tive effects in the design are desirable if close controll of

the response is to be obtained. This paper analyzes the

equal-element (periodic) band-stop filter, allowing for

lossy circuit elements. The equal-element response was

selected because it minimizes dissipation loss in the pass

band. An analysis using a lossy low-pass prototype is

described. The insertion loss has been determined as a

function of v (a normalized frequency variable), with u

(a normalized dissipation factor) as a parameter, for

any number of elements. These results are plotted for

n = 1 through 8 (with n the number of resonant circuits

in each filter). These curves form the basis of a design

procedure by which the required susceptance or reac-

tance slope parameters can be determined. At this point

in the procedure, the computation of resonator lengths

and coupling geometry follows directly from~ a proce-

dure given by Young et al, [1]. Examples of waveguide

and coaxial filters designed according to this method

agree closely with the theory presented.
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II. EQUAL-ELEMENT BAND-STOP FILTER ANALYSIS

Low-Pass Prototype

The analysis is based on the transformation of the

equivalent circuit of a band-stop filter to its low-pass

prototype. Figure 1 (a) shows the conventional low-pass

prototype circuit, and Fig. 1 (b) shows it modified to in-

clude dissipation. These prototypes can be analyzed to

predict the behavior of band-stop filters by using the

transformation

1 1 &l a,
——

–( -)

— —— (1)
u’ Wcol’ m(l @

where

~! = radian frequency of low-pass prototype

~ = radian frequency applied to band-stop filter

m = radian center frequency of band-stop filter.

The quantities wI’ and w are defined in Figs. 1 (c) and 2

for a specified band-edge attenuation. The series con-

ductance GI, G8, . . and shunt resistances Rz,

Rd,... are expressed [3] as

.,=%
u

= zv6J1’glQ.1

Q
R2=~ = wwl’g2Qq (2)

(JOC2

where the values of Q. are the unloaded Q’s of the reso-

nant circuits.

Equal-Element Filters

Although the circuit of Fig. 1 (b) can be analyzed for

any particular element values, we shall limit our dis-

cussion to the equal-element filter [3], [4]. By assum-

ing uniform dissipation (all Qu values equal), a group

of insertion-loss functions for any value of n can be de-

termined for large as well as small amounts of dissipa-

tion.

The equal-element type was chosen instead of Butter-

worth or Chebyshev designs because it has a lower dis-

sipation loss in its pass band for a specified stop-band

rejection. In Section III, it is shown that the equal-ele-

ment filter has the lowest pass-band loss for a specified

stop-band response of all possible designs having a fixed

number of resonators; this property is valid for small

dissipation loss. A similar property for the case of the

equal-element band-pass filters was treated by Cohn

[3]. Cohn showed that the equal-element band-pass

filter, for small dissipation loss, has the lowest center-

frequency loss for a specified stop-band rejection and

number of resonators.

Insertion Loss vs. Fvequemy

The insertion loss vs. frequency is analyzed for equal-

element band-stop filters in the Appendix. Expressions

are obtained for any number of resonant circuits and

are given specifically for n = 1 through 8. The analysis

assumes equal values of Q. for all resonators and that

the load resistor g~+l = go = 1.

The insertion-loss expressions are obtained by alter-

nately multiplying the Al? CD matrices of the shunt

and series elements of the 10SSY low-pass prototype. The

insertion loss is obtained from the resultant A B CD

matrix terms, that is,

]AT+B, +C7+D. \’
L = 10 log (3)

4

The loss expressions, as given in (37) in the Appendix,

are functions of a single complex variable X = u —jv,

where u is a normalized dissipation factor and v is a

normalized frequency variable. From (32) and (33),

(4)

(5)

Curves of insertion loss vs. v (with Lf as a parameter)

have been plotted in Figs. 3 through 18 for n = 1

through 8. These data were obtained by programming

(37) on a digital computer. The curves provide a map

of possible equal-element band-stop filter responses for

various dissipation factors. They therefore enable us to

account for large as well as small dissipative losses in

particular filter designs.

These curves enable us to determine the quantity

ul’g by determining the required v(vI) corresponding to

the start of the pass band for a known value of u. The

value of til’g is obtained from (5) and is equal to l/vl.

The required value of Qu is obtained from (4) and is

Qu = vl/z~w. It is often desirable to use the fractional

stop bandwidth w, in the design equations rather than

the fractional pass bandwidth w. In all equations v./w.

and vi/w are interchangeable.

The reactance slope parameter of the shunt elements

is

x

z

Similarly, the

series elements

b

w OL 1 t)1 v.
— — —— — —. (6)

Zll – Wwl’g – w – 7-0,

susceptance slope parameter b of the

is

U(IC 1 VI v, x ,L.— —
YO– YO– WW’,; –W– WS=Z“ (7)

The x and b parameters are important because they are

directly related to the required coupling reactance and

resonator lengths. The essential difference between the

slope parameters determined here and those in reference

[1] is that here x and b are modified from their lossless

values by the VI term. Figures 19, 20, and 21 summarize

the formulas used to obtain the coupling reactance and

resonator lengths required for typical waveguide and

TEM models. Section V explains their use in designing

equal-element filters.



1965 TAUB AND SLEVEN, BAND-STOFI FILTERS

I
I
I

+
0’
,s

i

w’

I I

+
0’

.
mn

I I

I

I i
I

3“

3°

3-

qP NI NOllVnN311V

“-—-\
m

.< 4

.—0

3m ,3=’

Q
,,

%“

qP NI NOllVnN311V



592 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

I 1 !

Tm

qP NI SS01 NO11U3SNI



TAUB AND SLEVEN: BAND-STOP FILTERS 593

n
w
(n
e

—w

L
‘z

—ao .-

Ult
~a

<
><

3<

:$
—ol-

gg

0 m m r. w In s’ m cd — 0

qP NI SS01 NOlli43SNl



594 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

ix
u

.-— — —.

. .—. . .—

—.-. —.—. ——

—----

-— — —

. . —

0 0 0 g g C&
0

0 0) m
0
*

g g 0 0—
—

‘%

qP NI SS01 NO11M3SNI



TAUB AND SLEVEN: BAND-STOP FILTERS 595

qP NI SS01 NO11M3SNI w

.-
:



596 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

!47
:

0
w
m *
cc -4
.
>
w
~z
mg?—
.:
WE <

—

:>

u
>$

3=

g:

~
KU —
~r
~1-

g~

I 2

.—-

— q

.-

1/ -
—.-

1I -
m

—

//, -— ..— -—

///

?

. ..—. —-. .

/// !//--- ?
IIIIu
h!/./-—. w

.— .- —..

IQ

/ W
—-.,—-——-. u.

—.- A.—

/

m

/

A / / N

I
.— / N /’

/ <

,,

/

I

— -.—
0 /

—.
m q

/ /

II
:

II

.
Q, f

,
.

,,

/ ‘

,t

/ /

0 0 0 ~ g CJ 0 g ~ 0 !0

g m a e

qP NI SS01 NO11H3SNI



1965 TAUB AND SLEVEN: BAND-STOP FI lTERS

,,

Ill I I

!3

0 m m r- * In * i.? N — 0

4P NI SS01 NO11H3SN I



598 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

---

—

—

0
$,

> -----

/

-

0 $J
0



1965 TAUB AND SLEVEN: BAND-STOP FILTERS 599

u J

/

/’

/[.
1

I / -

/
m
!,

11
N f

10 ,,
!,

/

/
:

/

/
/

~ y

/ ‘

/ - / /

/ .

— — ~ ~ / ‘ /

— — —. . — e — ~
/ -

/“

I

1 I I I

g m m t- (0 m * !0 N

qP NI SS01 NOll&13SNl

m

N

0



600 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER



1965 TAUB AND SLEVEN, BAND-STOP FILTERs 601

.— -—.—

‘1
I

L
/1:
I

I / ..-—

—..
/ L

-t-- -

~./
II

Y
.—. —

/ !,/m.

,/ /!,-,..-. t,/ r

,,

m

N

0

qP NI SS01 NOIUJ3SNI



602 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

I / I / ! / I I I \ w



1965 TAUB AND SLEVEN: BAND-STOP FILTERS 603

m m r. m 10 * w> cd

0

v

qP NI SS01 NO11M3SNI



604 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

r-

11
K

IIll /1 I I / I I

1



TAUB AND SLEVEN, BAND-STOP FILTERS (505

c1 m m r- (9 0 -I m N
—

<

qP NT SS01 NO11N3SNI

m

N

0



606 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

.—. —-- .,—.,.

.—-—.,——..-

- --- ——..—
/-

“.

/ /

/ /

m

/<
-o.-- --

//~ / / /

:
//+

//

:

/

/ /

5>$5
/f”” ~’ ‘ // /.. / {

/
q

I,.
1.— .- .— / . —. / / . —— . —

,,/’ g F7 * o a b m 0

L
,, ,!. ,, ,!. !, !! u ;

.— /

/ / / I I_—-.—,..---
/ I

jj % s g g
- 0

g CJ CJ g 0 0

q P NI SS01 NO11L13SNI



1965 TAUB AND SLEVEN: BAND-STOP FILTERS 607

o–.yN~W~~ 6.

,, . !, !! u ,, ,, ,, ,,

/ ‘/ ~

1

m m r- @ in * m N 0

qP NI SS01 NO11U3SNI



608 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

.
cd

.
-1

w

I

i

)

I

)

i

)

)

Oi

>0

I



1965 TAUB AND SLEVEN: BAND-STOP FILTERS . ..-

No

No

t---’

d’N“

T

cd

.+
1----

d+.N
.+*

aN“

I
I
I

I

I

+:

dN-

I--”--l

e“
lL-
N

5)0

- ;

N“
,s

0“

3°

w
?Y
c

7’

7N“

14

z—

N

>– N“
N3

,,

x.

~< NN
OJ ,,

,, ~.

w“ k-



610 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER

II 1. USEFUL RELATIONSHIPS

Certain properties of equal-element filters, which are

derived in this section, are important to consider when

applying the design procedure described in Section IV.

Stop- and Pass-Band Loss

The insertion loss in the high-rejection region (u<<l

and u<<v) can be approximated by noting that Mm of

(37) becomes

or

L =lolog:.
W“

(8)

(9)

In the low-loss region (v>>l and u<<v), we can solve

for the dissipation loss (the difference between the total

insertion loss with u #O and with u = O) by noting that

L=

x

This formula

lMn]2=~+4&!

IO,og 1“[2 ‘“( “u)—= lolog 1+;
4

?Z”
4.34; dB.

(lo)

(11)

(12)

for small dissipation loss is in agreement

with the relationship given ‘in Fig. 8 of refer&ce [1],

for the case where all g values are equal.

Element Values for Minimum Pass-Band Loss

The following shows that the equal-element filter

yields the minimum pass-band dissipation loss for a

specified rejection loss and rejection bandwidth. As-

sumed are small dissipation (less than 0.2 dB per reso-

nator in the pass band), equal values of Q,, for all resona-

tors, high rejection (at least 10 dB per resonator), and

go=gn+l=l.

For high rejection near the band center, the inser-

tion loss of a band-stop filter having low-pass prototype

element values gl, gz . . . g. is given by (5) and (6) of

reference [3]:

L = 20 log (J)”glgz . . . gn – 6 dB (13)

where cJ>>I.

The dissipation loss in the pass band (for small dis-

sipation) is obtained from Fig. 8 of reference [1]:

For a fixed rejection at a specified u’= u,’= ace{ (where

a is a specified constant), we have

(cll,’)~g,g, . . . g. = constant

or

(W’)ng,g, ~ . . g. = constant (15)

and at a fixed w —coO, Q%, and w, we desire

cw’(gl + g~ + “ . “ g.) = minimum. (16)

The derivatives of both expressions must therefore

be zero, that is,

8(k11’gJ 8(W’g2) a(wl’gn)
—+— +“”’ =0

W’gl W1’gz OJ1’gn

8(q’gJ + 6(cJ1’gJ + . . . a(til’gn) = o. (17)

These equations can be satisfied only when gl = gz

=.. . gn. An equal-element design will therefore yield

the lowest pass-band dissipation loss for a fixed rejec-

tion characteristic. Although small dissipation was as-

sumed, the equal-element filter is a very good choice for

larger pass-band dissipation (at least 1 dB per resona-

tor).

Optimum Number of Resonators

For a specified rejection bandwidth, the loss in the

pass band (at a specified frequency from that of maxi-

mum rejection) will be a function of the number of

resonators used and their unloaded Q’s. For a given

value of unloaded Q and the correct number of resona-

tors, the minimum loss in the pass band can be calcu-

lated. Formulas for the optimum number of resonators

and the resultant minimum insertion loss are presented

in the following paragraphs.

Using (9) and assuming a minimum stop-band loss

(L,) at a normalized frequency deviation v = v, gives

L.=20nlog~–6dB. (18)
V8

The loss at a pass frequency VI is defined from (12) as

4.34nu 4.34WU
LI=—=— dB (19)

V12 0%.2

where a is defined as the ratio of the pass bandwidth to

the stop bandwidth (v Jv,). By noting that

L.+6
J1 = (20)

20 log 1,/21.

V8
~=— (21)

w,Qu

where w. is the fractional stop bandwidth, LP can be

expressed as

4.34(L, + 6) dB
L, =

20zv,Qu,av, log l/z. “

1.086ZW’ CO 2
L=

Qu ()
— (g, + gz+ . ~. g,,)dB. (14)
u—coo

(22)
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Differentiating LP with respect to v, i~nd setting it equal

to zero gives log I/v, = 0.434, or

L8+6
‘n=—

8.68 “
(23)

This is similar to the optimum n for the band-pass case

[4], [5].

Using this n gives an LP1~i, of

27.2(L, + 6)
Lpm,n = (24)

20W,QUCY

IV. DESIGN PROCEDURE

General

The usual band-stop filter design requires a minimum

rejection within a specified frequency band and a maxi-

mum pass-band loss beyond a specified band. The first

problem is to choose the correct n (number of resonant

circuits), Examination of the response curves (Figs. 3

through 18) shows that more than one value of n will

often satisfy the requirements. The choice is often

simplified by the fact that an optimum n exists for a

specified rejection, as shown in the previous section.

(The selection of n is further discussed in the following

paragraph.) For the moment, let us assume that n has

been selected.

It is now necessary to determine u and v1. If the loss is

small (a< 0.1), approximate formulas (9) and (12) do

not require the use of the response curves; these for-

mulas are applied in this section. For larger losses, the

response curves are needed. With the aid of a successive

approximation procedure, values of u and VI can be ob-

tained. Finally, the coupling reactance and resonator

length values can be determined from the knowledge of

u and VI.

iVzimber of Resonators

Given a minimum stop-band loss L. with a band-

width B,, and a pass-band loss LI with a bandwidth B I,

the number of resonators can be determined by means

of (23).

Other choices of n are possible, but they will require

resonators with higher values of Qu to achieve the de-

sired response.

Determination of u and v

Having chosen n, the next step is to assume LL = O

(Iossless case) and solve for a trial value of v. (the v cor-

responding to the desired rejection) using (18). This

gives

1
& =

()

L,+6 -
log–l

20n

where L, is expressed in dB,

(25)

A trial value of Z1 is then obtained from (19) and is

a2va2L1
‘r/,. —

4,34%
(26)

where L1 is expressed in dB, and a = v~/v,. Using this

value of u, a new v, is determined from the appropriate

insertion-loss curve. This can again be used to compute

a more accurate u value using (27). If the new Ii has

changed significantly (more than 10 percent) from the

trial value, another v, must be determined. This process

can be repeated until an exact u is determined to match

both the stop- and the pass-band requirements simul-

taneously. In most cases, the procedure need not be re-

peated more than once after the trial value has been

obtained. The knowledge of u enables U[S to obtain an

exact v. which, in turn, yields VI= av,, the desired i nfor-

mation for computing the coupling reactance and reso-

nator lengths by means of the formulas given in Figs. 19,

20, and 21.

V. DESIGN EXAMPLJJS ANSI EXPERIMI%NTAL

VERIFICATION

The design procedures for waveguide and coaxial-line

band-stop filters are presented in this section, together

with measured data. In addition to showing close agree-

ment between measured and calculated responses, the

new dissipative design is clearly shown tc) be superior to

the previous lossless design.

Example 1

Required: A WI? 159 waveguide filter having the fol-

lowing characteristics:

Center frequency 6000 Mc
Insertion loss in the 43 dB o~er a f 1. 25-Mc bandwidth

stop band
Insertion loss in the 0.25 dB maximum at ~ 13.5 MC away

pass band from the center frequency (a= 10. 8).

The parameters that must be determined are number

of resonators, required unloaded Q’s, coupling reac-

tance, and resonator lengths.

The number of resonators is selected using (23). For

L. =43 dB, the calculated value of n = 5.64; the selection

of n therefore appears to either five or six resonators.

The n = 6 case is considered here. Using Fig. 13, a trial

v,= 0.35 is obtained for u = O. Using Fig. 14, a trial

value of u = 0.10 is obtained for VI =cYv. = 3.78 and

LP=0.25 dB. Using this u in Fig. 13 gives v, =0.36.

This value of V, is sufficiently close to the first trial value

so that the procedure does not have to be continued and

the values u = 0.10 and v.= 0.36 can be used in the

design.

The required unloaded resonator Q is determined

from (21) :

0.36
Q% .-!!-. = 5330

W,’u

()

2.5 & 2
—— Xo.1
6000 k

where (&/h)z = 1.62 at 6000 JMc in WR 159 waveguide.
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A similar procedure for n = 5 gives v,= 0.31 and

u = 0.10, resulting in Qu = 4600.

These results indicate a choice of n =5. A four-

resonator filter is also possible, but it would require a

higher Q. than either of the other two cases.

The filter will be designed using the model of Fig. 19

with Y5 = YO. The design requires knowledge of the sus-

ceptance slope parameter b/ YO. For an equal-element

filter, all b/ YO values are the same. The value of b/ YO

from (7) and Fig. 2 (b) is

b Vs 0.31
— — = 459.

~o–~– 2.5
— X 1.62
6000

To obtain the resonator length, we note in Fig. 19 that

G(+,) = 2b/Yb = 2b/% = 918

The value of do, obtained from Table II of reference

[1], is 86.64 degrees. This means that each resonator is

176.64 degrees in electrical length, or

176.64 A,
l=— = 1.222 inches

180 7

and the normalized coupling susceptance

& Bb
— — = tan 00 = 17.04.

Y5 – yo

The dimensions of the coupling apertures are deter-

mined by solving for the magnetic polarizability M’

using Bethe’s theory [6 ]– [8 ]. The expression is

B6 i,ab’

Yo = 4TriW
(27)

where a and b’ are the waveguide dimensions 1.590 and

0.795 inches.

Using reference [1], the 0.0147 value of ill’ is con-

verted into the dimensions for a rectangular aperture

with length = 0.450 inch and width = 0.196 inch. These

values are used for the first trial. The actual dimensions

required for the coupling susceptance in each of the five

resonators are set by taking measurements on a single-

resonator filter. For n = 1 and u = 0.10, we obtain (from

Fig. 4) a value of VI= 0.58 for 3 dB of insertion loss.

Substituting b/Y. = 459 and (&/A)z = 1.62 in (28) gives

the 3-dB bandwidth of 4.69 Mc for fo = 6000 MC:

Af & 2 VI

()

W.—_—
fo A bj Y, “

(28)

The actual aperture dimensions required for a 4.69-

Mc, 3-dB bandwidth in a single-resonator filter were

length = 0.450 inch and width= 0.221 inch. The aperture

thickness was 0.020 inch,

Figure 22 shows the close agreement between the

theoretical curve and the measured values for the five-

section band-reject filter. Another interesting compari-

son is between the dissipative band-stop filter design

outlined here and the design outlined in reference [1].

The pass-band loss at ~ 13.5 Nfc for the dissipative de-

sign, both measured and calculated, and the loss cal-

culated from the design in reference [1] are as follows:

Reference [1] design 0.77dB
Dissipative design (calculated) 0.25 dB
Dissipative design (measured) 0.30 d13.

The dissipative design provides lower pass-band loss

and closer control of the entire response.

Example 2

Required: A coaxial transmission-line filter of the

type shown in Fig. 21, having the following charac-

teristics:

Center frequency 291 Mc
Insertion loss in the stop band 50 dB over t 3 Mc
Number of resonators 5.

Requirements for minimum pass-band loss and mini-

mum size indicated the use of a O. 141-inch-diameter,

50-ohm, semirigid (Teflon-filled) coaxial line with an un-

loaded Q of 200 at 291 Mc.

The response curves of Fig. 11 show that 50 dB re-

j ection occurs at v.= 0.2 ~ for any u between O and 0.1.

The actual value of Z[ calculated from

v, 0.27
‘LL=—

—
—

.

w,Q.
; x 200

(21) is

0.065.

Only the coupling capacitance and the length of each

resonator must be determined to complete the filter

design.

With each resonator nominally one-half wavelength,

2% 2V. 2 X 0.27
G(60)=E=T= = 26.2

6/291

The value of C$O obtained from Table II of reference [1]

is 70 degrees. The calculated resonator length is 12.75

inches. The coupling capacitance calculated from the

expression

is 3.98 pF. By adjusting for the desired single-resonator

response, the optimum lumped capacitance was found

to be 3.6 pF and the correct resonator length was

12.5 inches.

Figure 23 shows the close agreement between the

measured and the calculated responses for insertion

losses up to at least 50 dB. Although not shown, the

pass-band response closely followed the theoretical

curve for insertion losses as low as 0.1 dB. Here again,

it is seen that the entire response can be accurately pre-

dicted and obtained in the presence of dissipation.
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VI. CONCLUSIONS

The design procedures and experimental results pre-

sented show that dissipation effects in equal-element

band-stop filters can be treated in an exact manner. The

use of an equal-element filter is desired because it can

yield a lower pass-band insertion loss for a specified re-

jection bandwidth than other designs and is simpler to

construct. Another significant feature of the equal-

element filter design is its ability to predict the entire

response accurately, even in the presence of dissipation.

AEWEN~IX

I NSEIRTION Loss OF AN n- RESON~TC)R EQUAL-

ELEMENT BAND-STOP FILTER

The insertion loss is c)btained by multiplying the

A B CD matrix of the first element with each succeeding

element. After an n-fold matrix multiplication, the over-

all AB CD matrix k obtained. The insertion loss k then

obtained from
~=lolog lA, +B, +c, +JDrl’

(29)
4
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where we assume gn+l =go = 1. Defining a complex variable X = u –jzI permits us to

Referring to Fig. 1 (b), the matrix of the first shunt express the matrices of (30) and (31) as

element is
10

(
1 0

1 [)
;1

(34)

10

01

1

1’ 1=1

1

1!”
— + —1—
GI jw’gl !

()

11+1 (35)

(30)

The matrix of the first series element is

( 1’

lZ
11 —1 ~

0110=
—+—
Rz jw’gz

o 1

Since gl=gz . “ “ =g~ and all Qu’s are equal, all R values

are equal to all G values. We can therefore, with the aid

of (2), define a normalized dissipation factor u, where

11 1
~’=—=—=

RG wwllgQ,,
(32)

and where g is the value of any element between gl and

gn. A normalized frequency variable v can also be

defined

(33)

[0 lJ

respectively. This indicates that the filter responses are

functions of a single complex variable X. The matrix of

a single shunt and series combination is the product of

(31) the foregoing matrices and is

(36)

This is multiplied by n/2 alike matrices (for n even) to

determine the overall matrix. For n odd, we multiply

(n – 1)/2 alike matrices and multiply this result by

(34). Using matrix expansion formulas contained in

Taub [4] and Storch [9] gives the following result:

IM, I’= 2+;’

IM,IS= 2+; +;7 ‘

IM31’= 2+++;++’

IM41’= 2+; +;Y+$+

IM,12= 2+;+++++

\M,l’= 2+; +$+++

IM7]’= 2+; +$+;+

]M,l’= ,2+++ $+$+

where

1’

X4

1

X6

2

X6

8

X6

Ilf,,!’
L=lolog — dB

4

2

!2

++-+k; .

(37)
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These expressions are identical to those for

equal-element band-pass filter, as given in

the lossy

(B-9) of

reference [4], except [hat l/X replace; the X used in the

band-pass case.

Expressions for any value of n can be determined in a

manner similar to that given in (B-11) of reference [41.

The result for the band-stop case is

(+2 n

2–s 1

s ) Xn–2–2.

1–s 1

s )1X.–I–28

2

where the summation of s includes only terms where

n—2s, n—2 —2s, n— 1 —2s are all equal to, or greater

than, zero. The terms within the parentheses are bi-

nomial coefficients, tables of which have been compiled

by the Smithsonian Institute [10].
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YIG Filters as Envelope Limiters

R. C. CUMMING, SENIOR MEMBER, IEEE,

Abstract—Envelope limiters are used in such applications as FM

demodulation and power leveling. Recently, the envelope-limiting

properties of yttrium-iron-garnet (YIG) filters were reported for the

special cases of unmodulated and pulsed input signals. Measured

data is presented hereon the response of a YIG limiter to AM carriers

having modulation index of the order of 50 percent. Sinusoidal,

square-wave, and low-pass noise modulating signals were used in

the measurements. It was found that a YIG filter will give good en-

velope Iiiiting for modulating frequencies in the submegacycle

range. At these low frequencies the carrier and the side frequencies

are not limited selectively. At higher modulating frequencies where

the limiting is frequency selective, the YIG filter will not remove the

envelope variations. In fact, in the particular filter tested, the modu-

lation index was increased, rather than decreased, at modulating

frequencies greater than about 75o kc/s. A graph is given showing

the measured factor of reduction (or increase) of modulation index,

as a function of modulating frequency. The response of the limiter

as a function of carrier frequency, modulating frequency, and input

power is shown by oscilloscope displays produced by sweeping the

carrier frequency or input power. In addition, selected photographs

of output envelope waveforms are given.

Manuscript received April 1, 1965; revised June 4, 1965. This pa-
per is based on work sponsored by the Air Force Avionics Lab.,
~j~jt-Patterson Air Force Base, Ohio, under Contract AF 33(657)-

The authors are with Electronics Laboratories, Stanford Uni-
versity, Stanford, Calif.

AND D. W. HOWELL, STUDENT MEMBER, IEEE

INTRODUCTION

T

HE APPLICATION of a YIG filter as a con-

ventional band pass limiter, i.e., the kind of limiter

that removes envelope variations from a narrow-

band signal, is presented. This envelope limiter should

be distinguished from the frequency-selective type where

each frequency component in the signal is limited inde-

pendent y [1], [2]. Perhaps the most familiar applica-

tion of envelope limiters is in FM demodulators, where

they are used to prevent envelope variations from ap-

pearing in the output. Another application is in power

leveling of signal generators.

The general conclusion of our work is that a YIG

filter will function as an envelope limiter for relatively

slow envelope variations, and as a frequency-selective

limiter for relatively fast envelope variations. In terms

of sinusoidal amplitude modulation, when the modu-

lating frequency is low relative to the dlecay time con-

stant of the spin-wave modes of the YIC7, the filter acts

as an envelope limiter. When the modulating frequency

is high relative to that time constant, the device acts as

a frequency-selective limiter.

The envelope-limiting properties of YIG filters have
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